PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/self/root/opt/saltstack/salt/lib/python3.10/site-packages/pydantic/_internal/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/self/root/opt/saltstack/salt/lib/python3.10/site-packages/pydantic/_internal/_core_utils.py |
from __future__ import annotations import os from collections import defaultdict from typing import ( Any, Callable, Hashable, TypeVar, Union, ) from pydantic_core import CoreSchema, core_schema from pydantic_core import validate_core_schema as _validate_core_schema from typing_extensions import TypeAliasType, TypeGuard, get_args, get_origin from . import _repr from ._typing_extra import is_generic_alias AnyFunctionSchema = Union[ core_schema.AfterValidatorFunctionSchema, core_schema.BeforeValidatorFunctionSchema, core_schema.WrapValidatorFunctionSchema, core_schema.PlainValidatorFunctionSchema, ] FunctionSchemaWithInnerSchema = Union[ core_schema.AfterValidatorFunctionSchema, core_schema.BeforeValidatorFunctionSchema, core_schema.WrapValidatorFunctionSchema, ] CoreSchemaField = Union[ core_schema.ModelField, core_schema.DataclassField, core_schema.TypedDictField, core_schema.ComputedField ] CoreSchemaOrField = Union[core_schema.CoreSchema, CoreSchemaField] _CORE_SCHEMA_FIELD_TYPES = {'typed-dict-field', 'dataclass-field', 'model-field', 'computed-field'} _FUNCTION_WITH_INNER_SCHEMA_TYPES = {'function-before', 'function-after', 'function-wrap'} _LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES = {'list', 'set', 'frozenset'} _DEFINITIONS_CACHE_METADATA_KEY = 'pydantic.definitions_cache' TAGGED_UNION_TAG_KEY = 'pydantic.internal.tagged_union_tag' """ Used in a `Tag` schema to specify the tag used for a discriminated union. """ HAS_INVALID_SCHEMAS_METADATA_KEY = 'pydantic.internal.invalid' """Used to mark a schema that is invalid because it refers to a definition that was not yet defined when the schema was first encountered. """ def is_core_schema( schema: CoreSchemaOrField, ) -> TypeGuard[CoreSchema]: return schema['type'] not in _CORE_SCHEMA_FIELD_TYPES def is_core_schema_field( schema: CoreSchemaOrField, ) -> TypeGuard[CoreSchemaField]: return schema['type'] in _CORE_SCHEMA_FIELD_TYPES def is_function_with_inner_schema( schema: CoreSchemaOrField, ) -> TypeGuard[FunctionSchemaWithInnerSchema]: return schema['type'] in _FUNCTION_WITH_INNER_SCHEMA_TYPES def is_list_like_schema_with_items_schema( schema: CoreSchema, ) -> TypeGuard[core_schema.ListSchema | core_schema.SetSchema | core_schema.FrozenSetSchema]: return schema['type'] in _LIST_LIKE_SCHEMA_WITH_ITEMS_TYPES def get_type_ref(type_: type[Any], args_override: tuple[type[Any], ...] | None = None) -> str: """Produces the ref to be used for this type by pydantic_core's core schemas. This `args_override` argument was added for the purpose of creating valid recursive references when creating generic models without needing to create a concrete class. """ origin = get_origin(type_) or type_ args = get_args(type_) if is_generic_alias(type_) else (args_override or ()) generic_metadata = getattr(type_, '__pydantic_generic_metadata__', None) if generic_metadata: origin = generic_metadata['origin'] or origin args = generic_metadata['args'] or args module_name = getattr(origin, '__module__', '<No __module__>') if isinstance(origin, TypeAliasType): type_ref = f'{module_name}.{origin.__name__}:{id(origin)}' else: try: qualname = getattr(origin, '__qualname__', f'<No __qualname__: {origin}>') except Exception: qualname = getattr(origin, '__qualname__', '<No __qualname__>') type_ref = f'{module_name}.{qualname}:{id(origin)}' arg_refs: list[str] = [] for arg in args: if isinstance(arg, str): # Handle string literals as a special case; we may be able to remove this special handling if we # wrap them in a ForwardRef at some point. arg_ref = f'{arg}:str-{id(arg)}' else: arg_ref = f'{_repr.display_as_type(arg)}:{id(arg)}' arg_refs.append(arg_ref) if arg_refs: type_ref = f'{type_ref}[{",".join(arg_refs)}]' return type_ref def get_ref(s: core_schema.CoreSchema) -> None | str: """Get the ref from the schema if it has one. This exists just for type checking to work correctly. """ return s.get('ref', None) def collect_definitions(schema: core_schema.CoreSchema) -> dict[str, core_schema.CoreSchema]: defs: dict[str, CoreSchema] = {} def _record_valid_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema: ref = get_ref(s) if ref: defs[ref] = s return recurse(s, _record_valid_refs) walk_core_schema(schema, _record_valid_refs) return defs def define_expected_missing_refs( schema: core_schema.CoreSchema, allowed_missing_refs: set[str] ) -> core_schema.CoreSchema | None: if not allowed_missing_refs: # in this case, there are no missing refs to potentially substitute, so there's no need to walk the schema # this is a common case (will be hit for all non-generic models), so it's worth optimizing for return None refs = collect_definitions(schema).keys() expected_missing_refs = allowed_missing_refs.difference(refs) if expected_missing_refs: definitions: list[core_schema.CoreSchema] = [ # TODO: Replace this with a (new) CoreSchema that, if present at any level, makes validation fail # Issue: https://github.com/pydantic/pydantic-core/issues/619 core_schema.none_schema(ref=ref, metadata={HAS_INVALID_SCHEMAS_METADATA_KEY: True}) for ref in expected_missing_refs ] return core_schema.definitions_schema(schema, definitions) return None def collect_invalid_schemas(schema: core_schema.CoreSchema) -> bool: invalid = False def _is_schema_valid(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema: nonlocal invalid if 'metadata' in s: metadata = s['metadata'] if HAS_INVALID_SCHEMAS_METADATA_KEY in metadata: invalid = metadata[HAS_INVALID_SCHEMAS_METADATA_KEY] return s return recurse(s, _is_schema_valid) walk_core_schema(schema, _is_schema_valid) return invalid T = TypeVar('T') Recurse = Callable[[core_schema.CoreSchema, 'Walk'], core_schema.CoreSchema] Walk = Callable[[core_schema.CoreSchema, Recurse], core_schema.CoreSchema] # TODO: Should we move _WalkCoreSchema into pydantic_core proper? # Issue: https://github.com/pydantic/pydantic-core/issues/615 class _WalkCoreSchema: def __init__(self): self._schema_type_to_method = self._build_schema_type_to_method() def _build_schema_type_to_method(self) -> dict[core_schema.CoreSchemaType, Recurse]: mapping: dict[core_schema.CoreSchemaType, Recurse] = {} key: core_schema.CoreSchemaType for key in get_args(core_schema.CoreSchemaType): method_name = f"handle_{key.replace('-', '_')}_schema" mapping[key] = getattr(self, method_name, self._handle_other_schemas) return mapping def walk(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema: return f(schema, self._walk) def _walk(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema: schema = self._schema_type_to_method[schema['type']](schema.copy(), f) ser_schema: core_schema.SerSchema | None = schema.get('serialization') # type: ignore if ser_schema: schema['serialization'] = self._handle_ser_schemas(ser_schema, f) return schema def _handle_other_schemas(self, schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema: sub_schema = schema.get('schema', None) if sub_schema is not None: schema['schema'] = self.walk(sub_schema, f) # type: ignore return schema def _handle_ser_schemas(self, ser_schema: core_schema.SerSchema, f: Walk) -> core_schema.SerSchema: schema: core_schema.CoreSchema | None = ser_schema.get('schema', None) if schema is not None: ser_schema['schema'] = self.walk(schema, f) # type: ignore return_schema: core_schema.CoreSchema | None = ser_schema.get('return_schema', None) if return_schema is not None: ser_schema['return_schema'] = self.walk(return_schema, f) # type: ignore return ser_schema def handle_definitions_schema(self, schema: core_schema.DefinitionsSchema, f: Walk) -> core_schema.CoreSchema: new_definitions: list[core_schema.CoreSchema] = [] for definition in schema['definitions']: if 'schema_ref' in definition and 'ref' in definition: # This indicates a purposely indirect reference # We want to keep such references around for implications related to JSON schema, etc.: new_definitions.append(definition) # However, we still need to walk the referenced definition: self.walk(definition, f) continue updated_definition = self.walk(definition, f) if 'ref' in updated_definition: # If the updated definition schema doesn't have a 'ref', it shouldn't go in the definitions # This is most likely to happen due to replacing something with a definition reference, in # which case it should certainly not go in the definitions list new_definitions.append(updated_definition) new_inner_schema = self.walk(schema['schema'], f) if not new_definitions and len(schema) == 3: # This means we'd be returning a "trivial" definitions schema that just wrapped the inner schema return new_inner_schema new_schema = schema.copy() new_schema['schema'] = new_inner_schema new_schema['definitions'] = new_definitions return new_schema def handle_list_schema(self, schema: core_schema.ListSchema, f: Walk) -> core_schema.CoreSchema: items_schema = schema.get('items_schema') if items_schema is not None: schema['items_schema'] = self.walk(items_schema, f) return schema def handle_set_schema(self, schema: core_schema.SetSchema, f: Walk) -> core_schema.CoreSchema: items_schema = schema.get('items_schema') if items_schema is not None: schema['items_schema'] = self.walk(items_schema, f) return schema def handle_frozenset_schema(self, schema: core_schema.FrozenSetSchema, f: Walk) -> core_schema.CoreSchema: items_schema = schema.get('items_schema') if items_schema is not None: schema['items_schema'] = self.walk(items_schema, f) return schema def handle_generator_schema(self, schema: core_schema.GeneratorSchema, f: Walk) -> core_schema.CoreSchema: items_schema = schema.get('items_schema') if items_schema is not None: schema['items_schema'] = self.walk(items_schema, f) return schema def handle_tuple_schema(self, schema: core_schema.TupleSchema, f: Walk) -> core_schema.CoreSchema: schema['items_schema'] = [self.walk(v, f) for v in schema['items_schema']] return schema def handle_dict_schema(self, schema: core_schema.DictSchema, f: Walk) -> core_schema.CoreSchema: keys_schema = schema.get('keys_schema') if keys_schema is not None: schema['keys_schema'] = self.walk(keys_schema, f) values_schema = schema.get('values_schema') if values_schema: schema['values_schema'] = self.walk(values_schema, f) return schema def handle_function_schema(self, schema: AnyFunctionSchema, f: Walk) -> core_schema.CoreSchema: if not is_function_with_inner_schema(schema): return schema schema['schema'] = self.walk(schema['schema'], f) return schema def handle_union_schema(self, schema: core_schema.UnionSchema, f: Walk) -> core_schema.CoreSchema: new_choices: list[CoreSchema | tuple[CoreSchema, str]] = [] for v in schema['choices']: if isinstance(v, tuple): new_choices.append((self.walk(v[0], f), v[1])) else: new_choices.append(self.walk(v, f)) schema['choices'] = new_choices return schema def handle_tagged_union_schema(self, schema: core_schema.TaggedUnionSchema, f: Walk) -> core_schema.CoreSchema: new_choices: dict[Hashable, core_schema.CoreSchema] = {} for k, v in schema['choices'].items(): new_choices[k] = v if isinstance(v, (str, int)) else self.walk(v, f) schema['choices'] = new_choices return schema def handle_chain_schema(self, schema: core_schema.ChainSchema, f: Walk) -> core_schema.CoreSchema: schema['steps'] = [self.walk(v, f) for v in schema['steps']] return schema def handle_lax_or_strict_schema(self, schema: core_schema.LaxOrStrictSchema, f: Walk) -> core_schema.CoreSchema: schema['lax_schema'] = self.walk(schema['lax_schema'], f) schema['strict_schema'] = self.walk(schema['strict_schema'], f) return schema def handle_json_or_python_schema(self, schema: core_schema.JsonOrPythonSchema, f: Walk) -> core_schema.CoreSchema: schema['json_schema'] = self.walk(schema['json_schema'], f) schema['python_schema'] = self.walk(schema['python_schema'], f) return schema def handle_model_fields_schema(self, schema: core_schema.ModelFieldsSchema, f: Walk) -> core_schema.CoreSchema: extras_schema = schema.get('extras_schema') if extras_schema is not None: schema['extras_schema'] = self.walk(extras_schema, f) replaced_fields: dict[str, core_schema.ModelField] = {} replaced_computed_fields: list[core_schema.ComputedField] = [] for computed_field in schema.get('computed_fields', ()): replaced_field = computed_field.copy() replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f) replaced_computed_fields.append(replaced_field) if replaced_computed_fields: schema['computed_fields'] = replaced_computed_fields for k, v in schema['fields'].items(): replaced_field = v.copy() replaced_field['schema'] = self.walk(v['schema'], f) replaced_fields[k] = replaced_field schema['fields'] = replaced_fields return schema def handle_typed_dict_schema(self, schema: core_schema.TypedDictSchema, f: Walk) -> core_schema.CoreSchema: extras_schema = schema.get('extras_schema') if extras_schema is not None: schema['extras_schema'] = self.walk(extras_schema, f) replaced_computed_fields: list[core_schema.ComputedField] = [] for computed_field in schema.get('computed_fields', ()): replaced_field = computed_field.copy() replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f) replaced_computed_fields.append(replaced_field) if replaced_computed_fields: schema['computed_fields'] = replaced_computed_fields replaced_fields: dict[str, core_schema.TypedDictField] = {} for k, v in schema['fields'].items(): replaced_field = v.copy() replaced_field['schema'] = self.walk(v['schema'], f) replaced_fields[k] = replaced_field schema['fields'] = replaced_fields return schema def handle_dataclass_args_schema(self, schema: core_schema.DataclassArgsSchema, f: Walk) -> core_schema.CoreSchema: replaced_fields: list[core_schema.DataclassField] = [] replaced_computed_fields: list[core_schema.ComputedField] = [] for computed_field in schema.get('computed_fields', ()): replaced_field = computed_field.copy() replaced_field['return_schema'] = self.walk(computed_field['return_schema'], f) replaced_computed_fields.append(replaced_field) if replaced_computed_fields: schema['computed_fields'] = replaced_computed_fields for field in schema['fields']: replaced_field = field.copy() replaced_field['schema'] = self.walk(field['schema'], f) replaced_fields.append(replaced_field) schema['fields'] = replaced_fields return schema def handle_arguments_schema(self, schema: core_schema.ArgumentsSchema, f: Walk) -> core_schema.CoreSchema: replaced_arguments_schema: list[core_schema.ArgumentsParameter] = [] for param in schema['arguments_schema']: replaced_param = param.copy() replaced_param['schema'] = self.walk(param['schema'], f) replaced_arguments_schema.append(replaced_param) schema['arguments_schema'] = replaced_arguments_schema if 'var_args_schema' in schema: schema['var_args_schema'] = self.walk(schema['var_args_schema'], f) if 'var_kwargs_schema' in schema: schema['var_kwargs_schema'] = self.walk(schema['var_kwargs_schema'], f) return schema def handle_call_schema(self, schema: core_schema.CallSchema, f: Walk) -> core_schema.CoreSchema: schema['arguments_schema'] = self.walk(schema['arguments_schema'], f) if 'return_schema' in schema: schema['return_schema'] = self.walk(schema['return_schema'], f) return schema _dispatch = _WalkCoreSchema().walk def walk_core_schema(schema: core_schema.CoreSchema, f: Walk) -> core_schema.CoreSchema: """Recursively traverse a CoreSchema. Args: schema (core_schema.CoreSchema): The CoreSchema to process, it will not be modified. f (Walk): A function to apply. This function takes two arguments: 1. The current CoreSchema that is being processed (not the same one you passed into this function, one level down). 2. The "next" `f` to call. This lets you for example use `f=functools.partial(some_method, some_context)` to pass data down the recursive calls without using globals or other mutable state. Returns: core_schema.CoreSchema: A processed CoreSchema. """ return f(schema.copy(), _dispatch) def simplify_schema_references(schema: core_schema.CoreSchema) -> core_schema.CoreSchema: # noqa: C901 definitions: dict[str, core_schema.CoreSchema] = {} ref_counts: dict[str, int] = defaultdict(int) involved_in_recursion: dict[str, bool] = {} current_recursion_ref_count: dict[str, int] = defaultdict(int) def collect_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema: if s['type'] == 'definitions': for definition in s['definitions']: ref = get_ref(definition) assert ref is not None if ref not in definitions: definitions[ref] = definition recurse(definition, collect_refs) return recurse(s['schema'], collect_refs) else: ref = get_ref(s) if ref is not None: new = recurse(s, collect_refs) new_ref = get_ref(new) if new_ref: definitions[new_ref] = new return core_schema.definition_reference_schema(schema_ref=ref) else: return recurse(s, collect_refs) schema = walk_core_schema(schema, collect_refs) def count_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema: if s['type'] != 'definition-ref': return recurse(s, count_refs) ref = s['schema_ref'] ref_counts[ref] += 1 if ref_counts[ref] >= 2: # If this model is involved in a recursion this should be detected # on its second encounter, we can safely stop the walk here. if current_recursion_ref_count[ref] != 0: involved_in_recursion[ref] = True return s current_recursion_ref_count[ref] += 1 recurse(definitions[ref], count_refs) current_recursion_ref_count[ref] -= 1 return s schema = walk_core_schema(schema, count_refs) assert all(c == 0 for c in current_recursion_ref_count.values()), 'this is a bug! please report it' def can_be_inlined(s: core_schema.DefinitionReferenceSchema, ref: str) -> bool: if ref_counts[ref] > 1: return False if involved_in_recursion.get(ref, False): return False if 'serialization' in s: return False if 'metadata' in s: metadata = s['metadata'] for k in ( 'pydantic_js_functions', 'pydantic_js_annotation_functions', 'pydantic.internal.union_discriminator', ): if k in metadata: # we need to keep this as a ref return False return True def inline_refs(s: core_schema.CoreSchema, recurse: Recurse) -> core_schema.CoreSchema: if s['type'] == 'definition-ref': ref = s['schema_ref'] # Check if the reference is only used once, not involved in recursion and does not have # any extra keys (like 'serialization') if can_be_inlined(s, ref): # Inline the reference by replacing the reference with the actual schema new = definitions.pop(ref) ref_counts[ref] -= 1 # because we just replaced it! # put all other keys that were on the def-ref schema into the inlined version # in particular this is needed for `serialization` if 'serialization' in s: new['serialization'] = s['serialization'] s = recurse(new, inline_refs) return s else: return recurse(s, inline_refs) else: return recurse(s, inline_refs) schema = walk_core_schema(schema, inline_refs) def_values = [v for v in definitions.values() if ref_counts[v['ref']] > 0] # type: ignore if def_values: schema = core_schema.definitions_schema(schema=schema, definitions=def_values) return schema def _strip_metadata(schema: CoreSchema) -> CoreSchema: def strip_metadata(s: CoreSchema, recurse: Recurse) -> CoreSchema: s = s.copy() s.pop('metadata', None) if s['type'] == 'model-fields': s = s.copy() s['fields'] = {k: v.copy() for k, v in s['fields'].items()} for field_name, field_schema in s['fields'].items(): field_schema.pop('metadata', None) s['fields'][field_name] = field_schema computed_fields = s.get('computed_fields', None) if computed_fields: s['computed_fields'] = [cf.copy() for cf in computed_fields] for cf in computed_fields: cf.pop('metadata', None) else: s.pop('computed_fields', None) elif s['type'] == 'model': # remove some defaults if s.get('custom_init', True) is False: s.pop('custom_init') if s.get('root_model', True) is False: s.pop('root_model') if {'title'}.issuperset(s.get('config', {}).keys()): s.pop('config', None) return recurse(s, strip_metadata) return walk_core_schema(schema, strip_metadata) def pretty_print_core_schema( schema: CoreSchema, include_metadata: bool = False, ) -> None: """Pretty print a CoreSchema using rich. This is intended for debugging purposes. Args: schema: The CoreSchema to print. include_metadata: Whether to include metadata in the output. Defaults to `False`. """ from rich import print # type: ignore # install it manually in your dev env if not include_metadata: schema = _strip_metadata(schema) return print(schema) def validate_core_schema(schema: CoreSchema) -> CoreSchema: if 'PYDANTIC_SKIP_VALIDATING_CORE_SCHEMAS' in os.environ: return schema return _validate_core_schema(schema)