PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/self/root/opt/saltstack/salt/lib/python3.10/site-packages/pydantic/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/self/root/opt/saltstack/salt/lib/python3.10/site-packages/pydantic/main.py |
"""Logic for creating models.""" from __future__ import annotations as _annotations import operator import sys import types import typing import warnings from copy import copy, deepcopy from typing import Any, ClassVar import pydantic_core import typing_extensions from pydantic_core import PydanticUndefined from ._internal import ( _config, _decorators, _fields, _forward_ref, _generics, _mock_val_ser, _model_construction, _repr, _typing_extra, _utils, ) from ._migration import getattr_migration from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler from .config import ConfigDict from .errors import PydanticUndefinedAnnotation, PydanticUserError from .json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema, JsonSchemaMode, JsonSchemaValue, model_json_schema from .warnings import PydanticDeprecatedSince20 if typing.TYPE_CHECKING: from inspect import Signature from pathlib import Path from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator from typing_extensions import Literal, Unpack from ._internal._utils import AbstractSetIntStr, MappingIntStrAny from .deprecated.parse import Protocol as DeprecatedParseProtocol from .fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr from .fields import Field as _Field TupleGenerator = typing.Generator[typing.Tuple[str, Any], None, None] Model = typing.TypeVar('Model', bound='BaseModel') # should be `set[int] | set[str] | dict[int, IncEx] | dict[str, IncEx] | None`, but mypy can't cope IncEx: typing_extensions.TypeAlias = 'set[int] | set[str] | dict[int, Any] | dict[str, Any] | None' else: # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 # and https://youtrack.jetbrains.com/issue/PY-51428 DeprecationWarning = PydanticDeprecatedSince20 __all__ = 'BaseModel', 'create_model' _object_setattr = _model_construction.object_setattr class BaseModel(metaclass=_model_construction.ModelMetaclass): """Usage docs: https://docs.pydantic.dev/2.6/concepts/models/ A base class for creating Pydantic models. Attributes: __class_vars__: The names of classvars defined on the model. __private_attributes__: Metadata about the private attributes of the model. __signature__: The signature for instantiating the model. __pydantic_complete__: Whether model building is completed, or if there are still undefined fields. __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer. __pydantic_custom_init__: Whether the model has a custom `__init__` function. __pydantic_decorators__: Metadata containing the decorators defined on the model. This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1. __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these. __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models. __pydantic_post_init__: The name of the post-init method for the model, if defined. __pydantic_root_model__: Whether the model is a `RootModel`. __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model. __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model. __pydantic_extra__: An instance attribute with the values of extra fields from validation when `model_config['extra'] == 'allow'`. __pydantic_fields_set__: An instance attribute with the names of fields explicitly set. __pydantic_private__: Instance attribute with the values of private attributes set on the model instance. """ if typing.TYPE_CHECKING: # Here we provide annotations for the attributes of BaseModel. # Many of these are populated by the metaclass, which is why this section is in a `TYPE_CHECKING` block. # However, for the sake of easy review, we have included type annotations of all class and instance attributes # of `BaseModel` here: # Class attributes model_config: ClassVar[ConfigDict] """ Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict]. """ model_fields: ClassVar[dict[str, FieldInfo]] """ Metadata about the fields defined on the model, mapping of field names to [`FieldInfo`][pydantic.fields.FieldInfo]. This replaces `Model.__fields__` from Pydantic V1. """ model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] """A dictionary of computed field names and their corresponding `ComputedFieldInfo` objects.""" __class_vars__: ClassVar[set[str]] __private_attributes__: ClassVar[dict[str, ModelPrivateAttr]] __signature__: ClassVar[Signature] __pydantic_complete__: ClassVar[bool] __pydantic_core_schema__: ClassVar[CoreSchema] __pydantic_custom_init__: ClassVar[bool] __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] __pydantic_parent_namespace__: ClassVar[dict[str, Any] | None] __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] __pydantic_root_model__: ClassVar[bool] __pydantic_serializer__: ClassVar[SchemaSerializer] __pydantic_validator__: ClassVar[SchemaValidator] # Instance attributes # Note: we use the non-existent kwarg `init=False` in pydantic.fields.Field below so that @dataclass_transform # doesn't think these are valid as keyword arguments to the class initializer. __pydantic_extra__: dict[str, Any] | None = _Field(init=False) # type: ignore __pydantic_fields_set__: set[str] = _Field(init=False) # type: ignore __pydantic_private__: dict[str, Any] | None = _Field(init=False) # type: ignore else: # `model_fields` and `__pydantic_decorators__` must be set for # pydantic._internal._generate_schema.GenerateSchema.model_schema to work for a plain BaseModel annotation model_fields = {} model_computed_fields = {} __pydantic_decorators__ = _decorators.DecoratorInfos() __pydantic_parent_namespace__ = None # Prevent `BaseModel` from being instantiated directly: __pydantic_validator__ = _mock_val_ser.MockValSer( 'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', val_or_ser='validator', code='base-model-instantiated', ) __pydantic_serializer__ = _mock_val_ser.MockValSer( 'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly', val_or_ser='serializer', code='base-model-instantiated', ) __slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__' model_config = ConfigDict() __pydantic_complete__ = False __pydantic_root_model__ = False def __init__(self, /, **data: Any) -> None: # type: ignore """Create a new model by parsing and validating input data from keyword arguments. Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. `self` is explicitly positional-only to allow `self` as a field name. """ # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks __tracebackhide__ = True self.__pydantic_validator__.validate_python(data, self_instance=self) # The following line sets a flag that we use to determine when `__init__` gets overridden by the user __init__.__pydantic_base_init__ = True # pyright: ignore[reportFunctionMemberAccess] @property def model_extra(self) -> dict[str, Any] | None: """Get extra fields set during validation. Returns: A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`. """ return self.__pydantic_extra__ @property def model_fields_set(self) -> set[str]: """Returns the set of fields that have been explicitly set on this model instance. Returns: A set of strings representing the fields that have been set, i.e. that were not filled from defaults. """ return self.__pydantic_fields_set__ @classmethod def model_construct(cls: type[Model], _fields_set: set[str] | None = None, **values: Any) -> Model: """Creates a new instance of the `Model` class with validated data. Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if `Config.extra = 'allow'` was set since it adds all passed values Args: _fields_set: The set of field names accepted for the Model instance. values: Trusted or pre-validated data dictionary. Returns: A new instance of the `Model` class with validated data. """ m = cls.__new__(cls) fields_values: dict[str, Any] = {} fields_set = set() for name, field in cls.model_fields.items(): if field.alias and field.alias in values: fields_values[name] = values.pop(field.alias) fields_set.add(name) elif name in values: fields_values[name] = values.pop(name) fields_set.add(name) elif not field.is_required(): fields_values[name] = field.get_default(call_default_factory=True) if _fields_set is None: _fields_set = fields_set _extra: dict[str, Any] | None = None if cls.model_config.get('extra') == 'allow': _extra = {} for k, v in values.items(): _extra[k] = v else: fields_values.update(values) _object_setattr(m, '__dict__', fields_values) _object_setattr(m, '__pydantic_fields_set__', _fields_set) if not cls.__pydantic_root_model__: _object_setattr(m, '__pydantic_extra__', _extra) if cls.__pydantic_post_init__: m.model_post_init(None) # update private attributes with values set if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None: for k, v in values.items(): if k in m.__private_attributes__: m.__pydantic_private__[k] = v elif not cls.__pydantic_root_model__: # Note: if there are any private attributes, cls.__pydantic_post_init__ would exist # Since it doesn't, that means that `__pydantic_private__` should be set to None _object_setattr(m, '__pydantic_private__', None) return m def model_copy(self: Model, *, update: dict[str, Any] | None = None, deep: bool = False) -> Model: """Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy Returns a copy of the model. Args: update: Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data. deep: Set to `True` to make a deep copy of the model. Returns: New model instance. """ copied = self.__deepcopy__() if deep else self.__copy__() if update: if self.model_config.get('extra') == 'allow': for k, v in update.items(): if k in self.model_fields: copied.__dict__[k] = v else: if copied.__pydantic_extra__ is None: copied.__pydantic_extra__ = {} copied.__pydantic_extra__[k] = v else: copied.__dict__.update(update) copied.__pydantic_fields_set__.update(update.keys()) return copied def model_dump( self, *, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True, ) -> dict[str, Any]: """Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. Args: mode: The mode in which `to_python` should run. If mode is 'json', the output will only contain JSON serializable types. If mode is 'python', the output may contain non-JSON-serializable Python objects. include: A list of fields to include in the output. exclude: A list of fields to exclude from the output. by_alias: Whether to use the field's alias in the dictionary key if defined. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of `None`. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered. Returns: A dictionary representation of the model. """ return self.__pydantic_serializer__.to_python( self, mode=mode, by_alias=by_alias, include=include, exclude=exclude, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, round_trip=round_trip, warnings=warnings, ) def model_dump_json( self, *, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True, ) -> str: """Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json Generates a JSON representation of the model using Pydantic's `to_json` method. Args: indent: Indentation to use in the JSON output. If None is passed, the output will be compact. include: Field(s) to include in the JSON output. exclude: Field(s) to exclude from the JSON output. by_alias: Whether to serialize using field aliases. exclude_unset: Whether to exclude fields that have not been explicitly set. exclude_defaults: Whether to exclude fields that are set to their default value. exclude_none: Whether to exclude fields that have a value of `None`. round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T]. warnings: Whether to log warnings when invalid fields are encountered. Returns: A JSON string representation of the model. """ return self.__pydantic_serializer__.to_json( self, indent=indent, include=include, exclude=exclude, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, round_trip=round_trip, warnings=warnings, ).decode() @classmethod def model_json_schema( cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, mode: JsonSchemaMode = 'validation', ) -> dict[str, Any]: """Generates a JSON schema for a model class. Args: by_alias: Whether to use attribute aliases or not. ref_template: The reference template. schema_generator: To override the logic used to generate the JSON schema, as a subclass of `GenerateJsonSchema` with your desired modifications mode: The mode in which to generate the schema. Returns: The JSON schema for the given model class. """ return model_json_schema( cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode ) @classmethod def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str: """Compute the class name for parametrizations of generic classes. This method can be overridden to achieve a custom naming scheme for generic BaseModels. Args: params: Tuple of types of the class. Given a generic class `Model` with 2 type variables and a concrete model `Model[str, int]`, the value `(str, int)` would be passed to `params`. Returns: String representing the new class where `params` are passed to `cls` as type variables. Raises: TypeError: Raised when trying to generate concrete names for non-generic models. """ if not issubclass(cls, typing.Generic): raise TypeError('Concrete names should only be generated for generic models.') # Any strings received should represent forward references, so we handle them specially below. # If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future, # we may be able to remove this special case. param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params] params_component = ', '.join(param_names) return f'{cls.__name__}[{params_component}]' def model_post_init(self, __context: Any) -> None: """Override this method to perform additional initialization after `__init__` and `model_construct`. This is useful if you want to do some validation that requires the entire model to be initialized. """ pass @classmethod def model_rebuild( cls, *, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None, ) -> bool | None: """Try to rebuild the pydantic-core schema for the model. This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails. Args: force: Whether to force the rebuilding of the model schema, defaults to `False`. raise_errors: Whether to raise errors, defaults to `True`. _parent_namespace_depth: The depth level of the parent namespace, defaults to 2. _types_namespace: The types namespace, defaults to `None`. Returns: Returns `None` if the schema is already "complete" and rebuilding was not required. If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`. """ if not force and cls.__pydantic_complete__: return None else: if '__pydantic_core_schema__' in cls.__dict__: delattr(cls, '__pydantic_core_schema__') # delete cached value to ensure full rebuild happens if _types_namespace is not None: types_namespace: dict[str, Any] | None = _types_namespace.copy() else: if _parent_namespace_depth > 0: frame_parent_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth) or {} cls_parent_ns = ( _model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {} ) types_namespace = {**cls_parent_ns, **frame_parent_ns} cls.__pydantic_parent_namespace__ = _model_construction.build_lenient_weakvaluedict(types_namespace) else: types_namespace = _model_construction.unpack_lenient_weakvaluedict( cls.__pydantic_parent_namespace__ ) types_namespace = _typing_extra.get_cls_types_namespace(cls, types_namespace) # manually override defer_build so complete_model_class doesn't skip building the model again config = {**cls.model_config, 'defer_build': False} return _model_construction.complete_model_class( cls, cls.__name__, _config.ConfigWrapper(config, check=False), raise_errors=raise_errors, types_namespace=types_namespace, ) @classmethod def model_validate( cls: type[Model], obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None, ) -> Model: """Validate a pydantic model instance. Args: obj: The object to validate. strict: Whether to enforce types strictly. from_attributes: Whether to extract data from object attributes. context: Additional context to pass to the validator. Raises: ValidationError: If the object could not be validated. Returns: The validated model instance. """ # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks __tracebackhide__ = True return cls.__pydantic_validator__.validate_python( obj, strict=strict, from_attributes=from_attributes, context=context ) @classmethod def model_validate_json( cls: type[Model], json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None, ) -> Model: """Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing Validate the given JSON data against the Pydantic model. Args: json_data: The JSON data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. Returns: The validated Pydantic model. Raises: ValueError: If `json_data` is not a JSON string. """ # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks __tracebackhide__ = True return cls.__pydantic_validator__.validate_json(json_data, strict=strict, context=context) @classmethod def model_validate_strings( cls: type[Model], obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None, ) -> Model: """Validate the given object contains string data against the Pydantic model. Args: obj: The object contains string data to validate. strict: Whether to enforce types strictly. context: Extra variables to pass to the validator. Returns: The validated Pydantic model. """ # `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks __tracebackhide__ = True return cls.__pydantic_validator__.validate_strings(obj, strict=strict, context=context) @classmethod def __get_pydantic_core_schema__(cls, __source: type[BaseModel], __handler: GetCoreSchemaHandler) -> CoreSchema: """Hook into generating the model's CoreSchema. Args: __source: The class we are generating a schema for. This will generally be the same as the `cls` argument if this is a classmethod. __handler: Call into Pydantic's internal JSON schema generation. A callable that calls into Pydantic's internal CoreSchema generation logic. Returns: A `pydantic-core` `CoreSchema`. """ # Only use the cached value from this _exact_ class; we don't want one from a parent class # This is why we check `cls.__dict__` and don't use `cls.__pydantic_core_schema__` or similar. if '__pydantic_core_schema__' in cls.__dict__: # Due to the way generic classes are built, it's possible that an invalid schema may be temporarily # set on generic classes. I think we could resolve this to ensure that we get proper schema caching # for generics, but for simplicity for now, we just always rebuild if the class has a generic origin. if not cls.__pydantic_generic_metadata__['origin']: return cls.__pydantic_core_schema__ return __handler(__source) @classmethod def __get_pydantic_json_schema__( cls, __core_schema: CoreSchema, __handler: GetJsonSchemaHandler, ) -> JsonSchemaValue: """Hook into generating the model's JSON schema. Args: __core_schema: A `pydantic-core` CoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`), or just call the handler with the original schema. __handler: Call into Pydantic's internal JSON schema generation. This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema generation fails. Since this gets called by `BaseModel.model_json_schema` you can override the `schema_generator` argument to that function to change JSON schema generation globally for a type. Returns: A JSON schema, as a Python object. """ return __handler(__core_schema) @classmethod def __pydantic_init_subclass__(cls, **kwargs: Any) -> None: """This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass` only after the class is actually fully initialized. In particular, attributes like `model_fields` will be present when this is called. This is necessary because `__init_subclass__` will always be called by `type.__new__`, and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that `type.__new__` was called in such a manner that the class would already be sufficiently initialized. This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely, any kwargs passed to the class definition that aren't used internally by pydantic. Args: **kwargs: Any keyword arguments passed to the class definition that aren't used internally by pydantic. """ pass def __class_getitem__( cls, typevar_values: type[Any] | tuple[type[Any], ...] ) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef: cached = _generics.get_cached_generic_type_early(cls, typevar_values) if cached is not None: return cached if cls is BaseModel: raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel') if not hasattr(cls, '__parameters__'): raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic') if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__: raise TypeError(f'{cls} is not a generic class') if not isinstance(typevar_values, tuple): typevar_values = (typevar_values,) _generics.check_parameters_count(cls, typevar_values) # Build map from generic typevars to passed params typevars_map: dict[_typing_extra.TypeVarType, type[Any]] = dict( zip(cls.__pydantic_generic_metadata__['parameters'], typevar_values) ) if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: submodel = cls # if arguments are equal to parameters it's the same object _generics.set_cached_generic_type(cls, typevar_values, submodel) else: parent_args = cls.__pydantic_generic_metadata__['args'] if not parent_args: args = typevar_values else: args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args) origin = cls.__pydantic_generic_metadata__['origin'] or cls model_name = origin.model_parametrized_name(args) params = tuple( {param: None for param in _generics.iter_contained_typevars(typevars_map.values())} ) # use dict as ordered set with _generics.generic_recursion_self_type(origin, args) as maybe_self_type: if maybe_self_type is not None: return maybe_self_type cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args) if cached is not None: return cached # Attempt to rebuild the origin in case new types have been defined try: # depth 3 gets you above this __class_getitem__ call origin.model_rebuild(_parent_namespace_depth=3) except PydanticUndefinedAnnotation: # It's okay if it fails, it just means there are still undefined types # that could be evaluated later. # TODO: Make sure validation fails if there are still undefined types, perhaps using MockValidator pass submodel = _generics.create_generic_submodel(model_name, origin, args, params) # Update cache _generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args) return submodel def __copy__(self: Model) -> Model: """Returns a shallow copy of the model.""" cls = type(self) m = cls.__new__(cls) _object_setattr(m, '__dict__', copy(self.__dict__)) _object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__)) _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) if self.__pydantic_private__ is None: _object_setattr(m, '__pydantic_private__', None) else: _object_setattr( m, '__pydantic_private__', {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, ) return m def __deepcopy__(self: Model, memo: dict[int, Any] | None = None) -> Model: """Returns a deep copy of the model.""" cls = type(self) m = cls.__new__(cls) _object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo)) _object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo)) # This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str], # and attempting a deepcopy would be marginally slower. _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) if self.__pydantic_private__ is None: _object_setattr(m, '__pydantic_private__', None) else: _object_setattr( m, '__pydantic_private__', deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo), ) return m if not typing.TYPE_CHECKING: # We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access def __getattr__(self, item: str) -> Any: private_attributes = object.__getattribute__(self, '__private_attributes__') if item in private_attributes: attribute = private_attributes[item] if hasattr(attribute, '__get__'): return attribute.__get__(self, type(self)) # type: ignore try: # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items return self.__pydantic_private__[item] # type: ignore except KeyError as exc: raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc else: # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized. # See `BaseModel.__repr_args__` for more details try: pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') except AttributeError: pydantic_extra = None if pydantic_extra is not None: try: return pydantic_extra[item] except KeyError as exc: raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc else: if hasattr(self.__class__, item): return super().__getattribute__(item) # Raises AttributeError if appropriate else: # this is the current error raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') def __setattr__(self, name: str, value: Any) -> None: if name in self.__class_vars__: raise AttributeError( f'{name!r} is a ClassVar of `{self.__class__.__name__}` and cannot be set on an instance. ' f'If you want to set a value on the class, use `{self.__class__.__name__}.{name} = value`.' ) elif not _fields.is_valid_field_name(name): if self.__pydantic_private__ is None or name not in self.__private_attributes__: _object_setattr(self, name, value) else: attribute = self.__private_attributes__[name] if hasattr(attribute, '__set__'): attribute.__set__(self, value) # type: ignore else: self.__pydantic_private__[name] = value return self._check_frozen(name, value) attr = getattr(self.__class__, name, None) if isinstance(attr, property): attr.__set__(self, value) elif self.model_config.get('validate_assignment', None): self.__pydantic_validator__.validate_assignment(self, name, value) elif self.model_config.get('extra') != 'allow' and name not in self.model_fields: # TODO - matching error raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') elif self.model_config.get('extra') == 'allow' and name not in self.model_fields: if self.model_extra and name in self.model_extra: self.__pydantic_extra__[name] = value # type: ignore else: try: getattr(self, name) except AttributeError: # attribute does not already exist on instance, so put it in extra self.__pydantic_extra__[name] = value # type: ignore else: # attribute _does_ already exist on instance, and was not in extra, so update it _object_setattr(self, name, value) else: self.__dict__[name] = value self.__pydantic_fields_set__.add(name) def __delattr__(self, item: str) -> Any: if item in self.__private_attributes__: attribute = self.__private_attributes__[item] if hasattr(attribute, '__delete__'): attribute.__delete__(self) # type: ignore return try: # Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items del self.__pydantic_private__[item] # type: ignore return except KeyError as exc: raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc self._check_frozen(item, None) if item in self.model_fields: object.__delattr__(self, item) elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__: del self.__pydantic_extra__[item] else: try: object.__delattr__(self, item) except AttributeError: raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') def _check_frozen(self, name: str, value: Any) -> None: if self.model_config.get('frozen', None): typ = 'frozen_instance' elif getattr(self.model_fields.get(name), 'frozen', False): typ = 'frozen_field' else: return error: pydantic_core.InitErrorDetails = { 'type': typ, 'loc': (name,), 'input': value, } raise pydantic_core.ValidationError.from_exception_data(self.__class__.__name__, [error]) def __getstate__(self) -> dict[Any, Any]: private = self.__pydantic_private__ if private: private = {k: v for k, v in private.items() if v is not PydanticUndefined} return { '__dict__': self.__dict__, '__pydantic_extra__': self.__pydantic_extra__, '__pydantic_fields_set__': self.__pydantic_fields_set__, '__pydantic_private__': private, } def __setstate__(self, state: dict[Any, Any]) -> None: _object_setattr(self, '__pydantic_fields_set__', state['__pydantic_fields_set__']) _object_setattr(self, '__pydantic_extra__', state['__pydantic_extra__']) _object_setattr(self, '__pydantic_private__', state['__pydantic_private__']) _object_setattr(self, '__dict__', state['__dict__']) def __eq__(self, other: Any) -> bool: if isinstance(other, BaseModel): # When comparing instances of generic types for equality, as long as all field values are equal, # only require their generic origin types to be equal, rather than exact type equality. # This prevents headaches like MyGeneric(x=1) != MyGeneric[Any](x=1). self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__ other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__ # Perform common checks first if not ( self_type == other_type and self.__pydantic_private__ == other.__pydantic_private__ and self.__pydantic_extra__ == other.__pydantic_extra__ ): return False # We only want to compare pydantic fields but ignoring fields is costly. # We'll perform a fast check first, and fallback only when needed # See GH-7444 and GH-7825 for rationale and a performance benchmark # First, do the fast (and sometimes faulty) __dict__ comparison if self.__dict__ == other.__dict__: # If the check above passes, then pydantic fields are equal, we can return early return True # We don't want to trigger unnecessary costly filtering of __dict__ on all unequal objects, so we return # early if there are no keys to ignore (we would just return False later on anyway) model_fields = type(self).model_fields.keys() if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields: return False # If we reach here, there are non-pydantic-fields keys, mapped to unequal values, that we need to ignore # Resort to costly filtering of the __dict__ objects # We use operator.itemgetter because it is much faster than dict comprehensions # NOTE: Contrary to standard python class and instances, when the Model class has a default value for an # attribute and the model instance doesn't have a corresponding attribute, accessing the missing attribute # raises an error in BaseModel.__getattr__ instead of returning the class attribute # So we can use operator.itemgetter() instead of operator.attrgetter() getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL try: return getter(self.__dict__) == getter(other.__dict__) except KeyError: # In rare cases (such as when using the deprecated BaseModel.copy() method), # the __dict__ may not contain all model fields, which is how we can get here. # getter(self.__dict__) is much faster than any 'safe' method that accounts # for missing keys, and wrapping it in a `try` doesn't slow things down much # in the common case. self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__) other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__) return getter(self_fields_proxy) == getter(other_fields_proxy) # other instance is not a BaseModel else: return NotImplemented # delegate to the other item in the comparison if typing.TYPE_CHECKING: # We put `__init_subclass__` in a TYPE_CHECKING block because, even though we want the type-checking benefits # described in the signature of `__init_subclass__` below, we don't want to modify the default behavior of # subclass initialization. def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]): """This signature is included purely to help type-checkers check arguments to class declaration, which provides a way to conveniently set model_config key/value pairs. ```py from pydantic import BaseModel class MyModel(BaseModel, extra='allow'): ... ``` However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any of the config arguments, and will only receive any keyword arguments passed during class initialization that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.) Args: **kwargs: Keyword arguments passed to the class definition, which set model_config Note: You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called *after* the class is fully initialized. """ def __iter__(self) -> TupleGenerator: """So `dict(model)` works.""" yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')] extra = self.__pydantic_extra__ if extra: yield from extra.items() def __repr__(self) -> str: return f'{self.__repr_name__()}({self.__repr_str__(", ")})' def __repr_args__(self) -> _repr.ReprArgs: for k, v in self.__dict__.items(): field = self.model_fields.get(k) if field and field.repr: yield k, v # `__pydantic_extra__` can fail to be set if the model is not yet fully initialized. # This can happen if a `ValidationError` is raised during initialization and the instance's # repr is generated as part of the exception handling. Therefore, we use `getattr` here # with a fallback, even though the type hints indicate the attribute will always be present. try: pydantic_extra = object.__getattribute__(self, '__pydantic_extra__') except AttributeError: pydantic_extra = None if pydantic_extra is not None: yield from ((k, v) for k, v in pydantic_extra.items()) yield from ((k, getattr(self, k)) for k, v in self.model_computed_fields.items() if v.repr) # take logic from `_repr.Representation` without the side effects of inheritance, see #5740 __repr_name__ = _repr.Representation.__repr_name__ __repr_str__ = _repr.Representation.__repr_str__ __pretty__ = _repr.Representation.__pretty__ __rich_repr__ = _repr.Representation.__rich_repr__ def __str__(self) -> str: return self.__repr_str__(' ') # ##### Deprecated methods from v1 ##### @property @typing_extensions.deprecated( 'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None ) def __fields__(self) -> dict[str, FieldInfo]: warnings.warn( 'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=PydanticDeprecatedSince20 ) return self.model_fields @property @typing_extensions.deprecated( 'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', category=None, ) def __fields_set__(self) -> set[str]: warnings.warn( 'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.', category=PydanticDeprecatedSince20, ) return self.__pydantic_fields_set__ @typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None) def dict( # noqa: D102 self, *, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, ) -> typing.Dict[str, Any]: # noqa UP006 warnings.warn('The `dict` method is deprecated; use `model_dump` instead.', category=PydanticDeprecatedSince20) return self.model_dump( include=include, exclude=exclude, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) @typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None) def json( # noqa: D102 self, *, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: typing.Callable[[Any], Any] | None = PydanticUndefined, # type: ignore[assignment] models_as_dict: bool = PydanticUndefined, # type: ignore[assignment] **dumps_kwargs: Any, ) -> str: warnings.warn( 'The `json` method is deprecated; use `model_dump_json` instead.', category=PydanticDeprecatedSince20 ) if encoder is not PydanticUndefined: raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.') if models_as_dict is not PydanticUndefined: raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.') if dumps_kwargs: raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.') return self.model_dump_json( include=include, exclude=exclude, by_alias=by_alias, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults, exclude_none=exclude_none, ) @classmethod @typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None) def parse_obj(cls: type[Model], obj: Any) -> Model: # noqa: D102 warnings.warn( 'The `parse_obj` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20 ) return cls.model_validate(obj) @classmethod @typing_extensions.deprecated( 'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' 'otherwise load the data then use `model_validate` instead.', category=None, ) def parse_raw( # noqa: D102 cls: type[Model], b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False, ) -> Model: # pragma: no cover warnings.warn( 'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, ' 'otherwise load the data then use `model_validate` instead.', category=PydanticDeprecatedSince20, ) from .deprecated import parse try: obj = parse.load_str_bytes( b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, ) except (ValueError, TypeError) as exc: import json # try to match V1 if isinstance(exc, UnicodeDecodeError): type_str = 'value_error.unicodedecode' elif isinstance(exc, json.JSONDecodeError): type_str = 'value_error.jsondecode' elif isinstance(exc, ValueError): type_str = 'value_error' else: type_str = 'type_error' # ctx is missing here, but since we've added `input` to the error, we're not pretending it's the same error: pydantic_core.InitErrorDetails = { # The type: ignore on the next line is to ignore the requirement of LiteralString 'type': pydantic_core.PydanticCustomError(type_str, str(exc)), # type: ignore 'loc': ('__root__',), 'input': b, } raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error]) return cls.model_validate(obj) @classmethod @typing_extensions.deprecated( 'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' 'use `model_validate_json`, otherwise `model_validate` instead.', category=None, ) def parse_file( # noqa: D102 cls: type[Model], path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False, ) -> Model: warnings.warn( 'The `parse_file` method is deprecated; load the data from file, then if your data is JSON ' 'use `model_validate_json`, otherwise `model_validate` instead.', category=PydanticDeprecatedSince20, ) from .deprecated import parse obj = parse.load_file( path, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, ) return cls.parse_obj(obj) @classmethod @typing_extensions.deprecated( 'The `from_orm` method is deprecated; set ' "`model_config['from_attributes']=True` and use `model_validate` instead.", category=None, ) def from_orm(cls: type[Model], obj: Any) -> Model: # noqa: D102 warnings.warn( 'The `from_orm` method is deprecated; set ' "`model_config['from_attributes']=True` and use `model_validate` instead.", category=PydanticDeprecatedSince20, ) if not cls.model_config.get('from_attributes', None): raise PydanticUserError( 'You must set the config attribute `from_attributes=True` to use from_orm', code=None ) return cls.model_validate(obj) @classmethod @typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None) def construct(cls: type[Model], _fields_set: set[str] | None = None, **values: Any) -> Model: # noqa: D102 warnings.warn( 'The `construct` method is deprecated; use `model_construct` instead.', category=PydanticDeprecatedSince20 ) return cls.model_construct(_fields_set=_fields_set, **values) @typing_extensions.deprecated( 'The `copy` method is deprecated; use `model_copy` instead. ' 'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', category=None, ) def copy( self: Model, *, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: typing.Dict[str, Any] | None = None, # noqa UP006 deep: bool = False, ) -> Model: # pragma: no cover """Returns a copy of the model. !!! warning "Deprecated" This method is now deprecated; use `model_copy` instead. If you need `include` or `exclude`, use: ```py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``` Args: include: Optional set or mapping specifying which fields to include in the copied model. exclude: Optional set or mapping specifying which fields to exclude in the copied model. update: Optional dictionary of field-value pairs to override field values in the copied model. deep: If True, the values of fields that are Pydantic models will be deep-copied. Returns: A copy of the model with included, excluded and updated fields as specified. """ warnings.warn( 'The `copy` method is deprecated; use `model_copy` instead. ' 'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.', category=PydanticDeprecatedSince20, ) from .deprecated import copy_internals values = dict( copy_internals._iter( self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False ), **(update or {}), ) if self.__pydantic_private__ is None: private = None else: private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined} if self.__pydantic_extra__ is None: extra: dict[str, Any] | None = None else: extra = self.__pydantic_extra__.copy() for k in list(self.__pydantic_extra__): if k not in values: # k was in the exclude extra.pop(k) for k in list(values): if k in self.__pydantic_extra__: # k must have come from extra extra[k] = values.pop(k) # new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg if update: fields_set = self.__pydantic_fields_set__ | update.keys() else: fields_set = set(self.__pydantic_fields_set__) # removing excluded fields from `__pydantic_fields_set__` if exclude: fields_set -= set(exclude) return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep) @classmethod @typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None) def schema( # noqa: D102 cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE ) -> typing.Dict[str, Any]: # noqa UP006 warnings.warn( 'The `schema` method is deprecated; use `model_json_schema` instead.', category=PydanticDeprecatedSince20 ) return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template) @classmethod @typing_extensions.deprecated( 'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', category=None, ) def schema_json( # noqa: D102 cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any ) -> str: # pragma: no cover warnings.warn( 'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.', category=PydanticDeprecatedSince20, ) import json from .deprecated.json import pydantic_encoder return json.dumps( cls.model_json_schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs, ) @classmethod @typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None) def validate(cls: type[Model], value: Any) -> Model: # noqa: D102 warnings.warn( 'The `validate` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20 ) return cls.model_validate(value) @classmethod @typing_extensions.deprecated( 'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', category=None, ) def update_forward_refs(cls, **localns: Any) -> None: # noqa: D102 warnings.warn( 'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.', category=PydanticDeprecatedSince20, ) if localns: # pragma: no cover raise TypeError('`localns` arguments are not longer accepted.') cls.model_rebuild(force=True) @typing_extensions.deprecated( 'The private method `_iter` will be removed and should no longer be used.', category=None ) def _iter(self, *args: Any, **kwargs: Any) -> Any: warnings.warn( 'The private method `_iter` will be removed and should no longer be used.', category=PydanticDeprecatedSince20, ) from .deprecated import copy_internals return copy_internals._iter(self, *args, **kwargs) @typing_extensions.deprecated( 'The private method `_copy_and_set_values` will be removed and should no longer be used.', category=None, ) def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any: warnings.warn( 'The private method `_copy_and_set_values` will be removed and should no longer be used.', category=PydanticDeprecatedSince20, ) from .deprecated import copy_internals return copy_internals._copy_and_set_values(self, *args, **kwargs) @classmethod @typing_extensions.deprecated( 'The private method `_get_value` will be removed and should no longer be used.', category=None, ) def _get_value(cls, *args: Any, **kwargs: Any) -> Any: warnings.warn( 'The private method `_get_value` will be removed and should no longer be used.', category=PydanticDeprecatedSince20, ) from .deprecated import copy_internals return copy_internals._get_value(cls, *args, **kwargs) @typing_extensions.deprecated( 'The private method `_calculate_keys` will be removed and should no longer be used.', category=None, ) def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any: warnings.warn( 'The private method `_calculate_keys` will be removed and should no longer be used.', category=PydanticDeprecatedSince20, ) from .deprecated import copy_internals return copy_internals._calculate_keys(self, *args, **kwargs) @typing.overload def create_model( __model_name: str, *, __config__: ConfigDict | None = None, __doc__: str | None = None, __base__: None = None, __module__: str = __name__, __validators__: dict[str, classmethod] | None = None, __cls_kwargs__: dict[str, Any] | None = None, **field_definitions: Any, ) -> type[BaseModel]: ... @typing.overload def create_model( __model_name: str, *, __config__: ConfigDict | None = None, __doc__: str | None = None, __base__: type[Model] | tuple[type[Model], ...], __module__: str = __name__, __validators__: dict[str, classmethod] | None = None, __cls_kwargs__: dict[str, Any] | None = None, **field_definitions: Any, ) -> type[Model]: ... def create_model( # noqa: C901 __model_name: str, *, __config__: ConfigDict | None = None, __doc__: str | None = None, __base__: type[Model] | tuple[type[Model], ...] | None = None, __module__: str | None = None, __validators__: dict[str, classmethod] | None = None, __cls_kwargs__: dict[str, Any] | None = None, __slots__: tuple[str, ...] | None = None, **field_definitions: Any, ) -> type[Model]: """Usage docs: https://docs.pydantic.dev/2.6/concepts/models/#dynamic-model-creation Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a subclass of [`BaseModel`][pydantic.BaseModel]. Args: __model_name: The name of the newly created model. __config__: The configuration of the new model. __doc__: The docstring of the new model. __base__: The base class or classes for the new model. __module__: The name of the module that the model belongs to; if `None`, the value is taken from `sys._getframe(1)` __validators__: A dictionary of methods that validate fields. __cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`. __slots__: Deprecated. Should not be passed to `create_model`. **field_definitions: Attributes of the new model. They should be passed in the format: `<name>=(<type>, <default value>)` or `<name>=(<type>, <FieldInfo>)`. Returns: The new [model][pydantic.BaseModel]. Raises: PydanticUserError: If `__base__` and `__config__` are both passed. """ if __slots__ is not None: # __slots__ will be ignored from here on warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) if __base__ is not None: if __config__ is not None: raise PydanticUserError( 'to avoid confusion `__config__` and `__base__` cannot be used together', code='create-model-config-base', ) if not isinstance(__base__, tuple): __base__ = (__base__,) else: __base__ = (typing.cast(typing.Type['Model'], BaseModel),) __cls_kwargs__ = __cls_kwargs__ or {} fields = {} annotations = {} for f_name, f_def in field_definitions.items(): if not _fields.is_valid_field_name(f_name): warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) if isinstance(f_def, tuple): f_def = typing.cast('tuple[str, Any]', f_def) try: f_annotation, f_value = f_def except ValueError as e: raise PydanticUserError( 'Field definitions should be a `(<type>, <default>)`.', code='create-model-field-definitions', ) from e else: f_annotation, f_value = None, f_def if f_annotation: annotations[f_name] = f_annotation fields[f_name] = f_value if __module__ is None: f = sys._getframe(1) __module__ = f.f_globals['__name__'] namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__} if __doc__: namespace.update({'__doc__': __doc__}) if __validators__: namespace.update(__validators__) namespace.update(fields) if __config__: namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict resolved_bases = types.resolve_bases(__base__) meta, ns, kwds = types.prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__) if resolved_bases is not __base__: ns['__orig_bases__'] = __base__ namespace.update(ns) return meta( __model_name, resolved_bases, namespace, __pydantic_reset_parent_namespace__=False, _create_model_module=__module__, **kwds, ) __getattr__ = getattr_migration(__name__)