PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/thread-self/root/proc/self/root/proc/self/root/opt/alt/ruby18/lib64/ruby/1.8/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/thread-self/root/proc/self/root/proc/self/root/opt/alt/ruby18/lib64/ruby/1.8/complex.rb |
# # complex.rb - # $Release Version: 0.5 $ # $Revision: 1.3 $ # $Date: 1998/07/08 10:05:28 $ # by Keiju ISHITSUKA(SHL Japan Inc.) # # ---- # # complex.rb implements the Complex class for complex numbers. Additionally, # some methods in other Numeric classes are redefined or added to allow greater # interoperability with Complex numbers. # # Complex numbers can be created in the following manner: # - <tt>Complex(a, b)</tt> # - <tt>Complex.polar(radius, theta)</tt> # # Additionally, note the following: # - <tt>Complex::I</tt> (the mathematical constant <i>i</i>) # - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>) # # The following +Math+ module methods are redefined to handle Complex arguments. # They will work as normal with non-Complex arguments. # sqrt exp cos sin tan log log10 # cosh sinh tanh acos asin atan atan2 acosh asinh atanh # # # Numeric is a built-in class on which Fixnum, Bignum, etc., are based. Here # some methods are added so that all number types can be treated to some extent # as Complex numbers. # class Numeric # # Returns a Complex number <tt>(0,<i>self</i>)</tt>. # def im Complex(0, self) end # # The real part of a complex number, i.e. <i>self</i>. # def real self end # # The imaginary part of a complex number, i.e. 0. # def image 0 end alias imag image # # See Complex#arg. # def arg Math.atan2!(0, self) end alias angle arg # # See Complex#polar. # def polar return abs, arg end # # See Complex#conjugate (short answer: returns <i>self</i>). # def conjugate self end alias conj conjugate end # # Creates a Complex number. +a+ and +b+ should be Numeric. The result will be # <tt>a+bi</tt>. # def Complex(a, b = 0) if b == 0 and (a.kind_of?(Complex) or defined? Complex::Unify) a else Complex.new( a.real-b.imag, a.imag+b.real ) end end # # The complex number class. See complex.rb for an overview. # class Complex < Numeric @RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-' undef step undef div, divmod undef floor, truncate, ceil, round def Complex.generic?(other) # :nodoc: other.kind_of?(Integer) or other.kind_of?(Float) or (defined?(Rational) and other.kind_of?(Rational)) end # # Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle). # def Complex.polar(r, theta) Complex(r*Math.cos(theta), r*Math.sin(theta)) end # # Creates a +Complex+ number <tt>a</tt>+<tt>b</tt><i>i</i>. # def Complex.new!(a, b=0) new(a,b) end def initialize(a, b) raise TypeError, "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric raise TypeError, "`#{a.inspect}' for 1st arg" if a.kind_of? Complex raise TypeError, "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric raise TypeError, "`#{b.inspect}' for 2nd arg" if b.kind_of? Complex @real = a @image = b end # # Addition with real or complex number. # def + (other) if other.kind_of?(Complex) re = @real + other.real im = @image + other.image Complex(re, im) elsif Complex.generic?(other) Complex(@real + other, @image) else x , y = other.coerce(self) x + y end end # # Subtraction with real or complex number. # def - (other) if other.kind_of?(Complex) re = @real - other.real im = @image - other.image Complex(re, im) elsif Complex.generic?(other) Complex(@real - other, @image) else x , y = other.coerce(self) x - y end end # # Multiplication with real or complex number. # def * (other) if other.kind_of?(Complex) re = @real*other.real - @image*other.image im = @real*other.image + @image*other.real Complex(re, im) elsif Complex.generic?(other) Complex(@real * other, @image * other) else x , y = other.coerce(self) x * y end end # # Division by real or complex number. # def / (other) if other.kind_of?(Complex) self*other.conjugate/other.abs2 elsif Complex.generic?(other) Complex(@real/other, @image/other) else x, y = other.coerce(self) x/y end end def quo(other) Complex(@real.quo(1), @image.quo(1)) / other end # # Raise this complex number to the given (real or complex) power. # def ** (other) if other == 0 return Complex(1) end if other.kind_of?(Complex) r, theta = polar ore = other.real oim = other.image nr = Math.exp!(ore*Math.log!(r) - oim * theta) ntheta = theta*ore + oim*Math.log!(r) Complex.polar(nr, ntheta) elsif other.kind_of?(Integer) if other > 0 x = self z = x n = other - 1 while n != 0 while (div, mod = n.divmod(2) mod == 0) x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image) n = div end z *= x n -= 1 end z else if defined? Rational (Rational(1) / self) ** -other else self ** Float(other) end end elsif Complex.generic?(other) r, theta = polar Complex.polar(r**other, theta*other) else x, y = other.coerce(self) x**y end end # # Remainder after division by a real or complex number. # def % (other) if other.kind_of?(Complex) Complex(@real % other.real, @image % other.image) elsif Complex.generic?(other) Complex(@real % other, @image % other) else x , y = other.coerce(self) x % y end end #-- # def divmod(other) # if other.kind_of?(Complex) # rdiv, rmod = @real.divmod(other.real) # idiv, imod = @image.divmod(other.image) # return Complex(rdiv, idiv), Complex(rmod, rmod) # elsif Complex.generic?(other) # Complex(@real.divmod(other), @image.divmod(other)) # else # x , y = other.coerce(self) # x.divmod(y) # end # end #++ # # Absolute value (aka modulus): distance from the zero point on the complex # plane. # def abs Math.hypot(@real, @image) end # # Square of the absolute value. # def abs2 @real*@real + @image*@image end # # Argument (angle from (1,0) on the complex plane). # def arg Math.atan2!(@image, @real) end alias angle arg # # Returns the absolute value _and_ the argument. # def polar return abs, arg end # # Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>). # def conjugate Complex(@real, -@image) end alias conj conjugate # # Compares the absolute values of the two numbers. # def <=> (other) self.abs <=> other.abs end # # Test for numerical equality (<tt>a == a + 0<i>i</i></tt>). # def == (other) if other.kind_of?(Complex) @real == other.real and @image == other.image elsif Complex.generic?(other) @real == other and @image == 0 else other == self end end # # Attempts to coerce +other+ to a Complex number. # def coerce(other) if Complex.generic?(other) return Complex.new!(other), self else super end end # # FIXME # def denominator @real.denominator.lcm(@image.denominator) end # # FIXME # def numerator cd = denominator Complex(@real.numerator*(cd/@real.denominator), @image.numerator*(cd/@image.denominator)) end # # Standard string representation of the complex number. # def to_s if @real != 0 if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1 if @image >= 0 @real.to_s+"+("+@image.to_s+")i" else @real.to_s+"-("+(-@image).to_s+")i" end else if @image >= 0 @real.to_s+"+"+@image.to_s+"i" else @real.to_s+"-"+(-@image).to_s+"i" end end else if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1 "("+@image.to_s+")i" else @image.to_s+"i" end end end # # Returns a hash code for the complex number. # def hash @real.hash ^ @image.hash end # # Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>". # def inspect sprintf("Complex(%s, %s)", @real.inspect, @image.inspect) end # # +I+ is the imaginary number. It exists at point (0,1) on the complex plane. # I = Complex(0,1) # The real part of a complex number. attr :real # The imaginary part of a complex number. attr :image alias imag image end class Integer unless defined?(1.numerator) def numerator() self end def denominator() 1 end def gcd(other) min = self.abs max = other.abs while min > 0 tmp = min min = max % min max = tmp end max end def lcm(other) if self.zero? or other.zero? 0 else (self.div(self.gcd(other)) * other).abs end end end end module Math alias sqrt! sqrt alias exp! exp alias log! log alias log10! log10 alias cos! cos alias sin! sin alias tan! tan alias cosh! cosh alias sinh! sinh alias tanh! tanh alias acos! acos alias asin! asin alias atan! atan alias atan2! atan2 alias acosh! acosh alias asinh! asinh alias atanh! atanh # Redefined to handle a Complex argument. def sqrt(z) if Complex.generic?(z) if z >= 0 sqrt!(z) else Complex(0,sqrt!(-z)) end else if z.image < 0 sqrt(z.conjugate).conjugate else r = z.abs x = z.real Complex( sqrt!((r+x)/2), sqrt!((r-x)/2) ) end end end # Redefined to handle a Complex argument. def exp(z) if Complex.generic?(z) exp!(z) else Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image)) end end # Redefined to handle a Complex argument. def cos(z) if Complex.generic?(z) cos!(z) else Complex(cos!(z.real)*cosh!(z.image), -sin!(z.real)*sinh!(z.image)) end end # Redefined to handle a Complex argument. def sin(z) if Complex.generic?(z) sin!(z) else Complex(sin!(z.real)*cosh!(z.image), cos!(z.real)*sinh!(z.image)) end end # Redefined to handle a Complex argument. def tan(z) if Complex.generic?(z) tan!(z) else sin(z)/cos(z) end end def sinh(z) if Complex.generic?(z) sinh!(z) else Complex( sinh!(z.real)*cos!(z.image), cosh!(z.real)*sin!(z.image) ) end end def cosh(z) if Complex.generic?(z) cosh!(z) else Complex( cosh!(z.real)*cos!(z.image), sinh!(z.real)*sin!(z.image) ) end end def tanh(z) if Complex.generic?(z) tanh!(z) else sinh(z)/cosh(z) end end # Redefined to handle a Complex argument. def log(z) if Complex.generic?(z) and z >= 0 log!(z) else r, theta = z.polar Complex(log!(r.abs), theta) end end # Redefined to handle a Complex argument. def log10(z) if Complex.generic?(z) log10!(z) else log(z)/log!(10) end end def acos(z) if Complex.generic?(z) and z >= -1 and z <= 1 acos!(z) else -1.0.im * log( z + 1.0.im * sqrt(1.0-z*z) ) end end def asin(z) if Complex.generic?(z) and z >= -1 and z <= 1 asin!(z) else -1.0.im * log( 1.0.im * z + sqrt(1.0-z*z) ) end end def atan(z) if Complex.generic?(z) atan!(z) else 1.0.im * log( (1.0.im+z) / (1.0.im-z) ) / 2.0 end end def atan2(y,x) if Complex.generic?(y) and Complex.generic?(x) atan2!(y,x) else -1.0.im * log( (x+1.0.im*y) / sqrt(x*x+y*y) ) end end def acosh(z) if Complex.generic?(z) and z >= 1 acosh!(z) else log( z + sqrt(z*z-1.0) ) end end def asinh(z) if Complex.generic?(z) asinh!(z) else log( z + sqrt(1.0+z*z) ) end end def atanh(z) if Complex.generic?(z) and z >= -1 and z <= 1 atanh!(z) else log( (1.0+z) / (1.0-z) ) / 2.0 end end module_function :sqrt! module_function :sqrt module_function :exp! module_function :exp module_function :log! module_function :log module_function :log10! module_function :log10 module_function :cosh! module_function :cosh module_function :cos! module_function :cos module_function :sinh! module_function :sinh module_function :sin! module_function :sin module_function :tan! module_function :tan module_function :tanh! module_function :tanh module_function :acos! module_function :acos module_function :asin! module_function :asin module_function :atan! module_function :atan module_function :atan2! module_function :atan2 module_function :acosh! module_function :acosh module_function :asinh! module_function :asinh module_function :atanh! module_function :atanh end # Documentation comments: # - source: original (researched from pickaxe) # - a couple of fixme's # - RDoc output for Bignum etc. is a bit short, with nothing but an # (undocumented) alias. No big deal.