PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/thread-self/root/proc/self/root/proc/self/root/opt/imh-python/lib/python2.7/test/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/thread-self/root/proc/self/root/proc/self/root/opt/imh-python/lib/python2.7/test/ieee754.txt |
====================================== Python IEEE 754 floating point support ====================================== >>> from sys import float_info as FI >>> from math import * >>> PI = pi >>> E = e You must never compare two floats with == because you are not going to get what you expect. We treat two floats as equal if the difference between them is small than epsilon. >>> EPS = 1E-15 >>> def equal(x, y): ... """Almost equal helper for floats""" ... return abs(x - y) < EPS NaNs and INFs ============= In Python 2.6 and newer NaNs (not a number) and infinity can be constructed from the strings 'inf' and 'nan'. >>> INF = float('inf') >>> NINF = float('-inf') >>> NAN = float('nan') >>> INF inf >>> NINF -inf >>> NAN nan The math module's ``isnan`` and ``isinf`` functions can be used to detect INF and NAN: >>> isinf(INF), isinf(NINF), isnan(NAN) (True, True, True) >>> INF == -NINF True Infinity -------- Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN. >>> INF * 0 nan >>> INF - INF nan >>> INF / INF nan However unambigous operations with inf return inf: >>> INF * INF inf >>> 1.5 * INF inf >>> 0.5 * INF inf >>> INF / 1000 inf Not a Number ------------ NaNs are never equal to another number, even itself >>> NAN == NAN False >>> NAN < 0 False >>> NAN >= 0 False All operations involving a NaN return a NaN except for nan**0 and 1**nan. >>> 1 + NAN nan >>> 1 * NAN nan >>> 0 * NAN nan >>> 1 ** NAN 1.0 >>> NAN ** 0 1.0 >>> 0 ** NAN nan >>> (1.0 + FI.epsilon) * NAN nan Misc Functions ============== The power of 1 raised to x is always 1.0, even for special values like 0, infinity and NaN. >>> pow(1, 0) 1.0 >>> pow(1, INF) 1.0 >>> pow(1, -INF) 1.0 >>> pow(1, NAN) 1.0 The power of 0 raised to x is defined as 0, if x is positive. Negative values are a domain error or zero division error and NaN result in a silent NaN. >>> pow(0, 0) 1.0 >>> pow(0, INF) 0.0 >>> pow(0, -INF) Traceback (most recent call last): ... ValueError: math domain error >>> 0 ** -1 Traceback (most recent call last): ... ZeroDivisionError: 0.0 cannot be raised to a negative power >>> pow(0, NAN) nan Trigonometric Functions ======================= >>> sin(INF) Traceback (most recent call last): ... ValueError: math domain error >>> sin(NINF) Traceback (most recent call last): ... ValueError: math domain error >>> sin(NAN) nan >>> cos(INF) Traceback (most recent call last): ... ValueError: math domain error >>> cos(NINF) Traceback (most recent call last): ... ValueError: math domain error >>> cos(NAN) nan >>> tan(INF) Traceback (most recent call last): ... ValueError: math domain error >>> tan(NINF) Traceback (most recent call last): ... ValueError: math domain error >>> tan(NAN) nan Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value and tan(pi) is a very small value: >>> tan(PI/2) > 1E10 True >>> -tan(-PI/2) > 1E10 True >>> tan(PI) < 1E-15 True >>> asin(NAN), acos(NAN), atan(NAN) (nan, nan, nan) >>> asin(INF), asin(NINF) Traceback (most recent call last): ... ValueError: math domain error >>> acos(INF), acos(NINF) Traceback (most recent call last): ... ValueError: math domain error >>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2) (True, True) Hyberbolic Functions ====================