PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/thread-self/root/proc/self/root/proc/self/root/opt/saltstack/salt/extras-3.10/dns/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/thread-self/root/proc/self/root/proc/self/root/opt/saltstack/salt/extras-3.10/dns/dnssec.py |
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2017 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """Common DNSSEC-related functions and constants.""" import hashlib import struct import time import base64 import dns.enum import dns.exception import dns.name import dns.node import dns.rdataset import dns.rdata import dns.rdatatype import dns.rdataclass class UnsupportedAlgorithm(dns.exception.DNSException): """The DNSSEC algorithm is not supported.""" class ValidationFailure(dns.exception.DNSException): """The DNSSEC signature is invalid.""" class Algorithm(dns.enum.IntEnum): RSAMD5 = 1 DH = 2 DSA = 3 ECC = 4 RSASHA1 = 5 DSANSEC3SHA1 = 6 RSASHA1NSEC3SHA1 = 7 RSASHA256 = 8 RSASHA512 = 10 ECCGOST = 12 ECDSAP256SHA256 = 13 ECDSAP384SHA384 = 14 ED25519 = 15 ED448 = 16 INDIRECT = 252 PRIVATEDNS = 253 PRIVATEOID = 254 @classmethod def _maximum(cls): return 255 globals().update(Algorithm.__members__) def algorithm_from_text(text): """Convert text into a DNSSEC algorithm value. *text*, a ``str``, the text to convert to into an algorithm value. Returns an ``int``. """ return Algorithm.from_text(text) def algorithm_to_text(value): """Convert a DNSSEC algorithm value to text *value*, an ``int`` a DNSSEC algorithm. Returns a ``str``, the name of a DNSSEC algorithm. """ return Algorithm.to_text(value) def key_id(key): """Return the key id (a 16-bit number) for the specified key. *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY`` Returns an ``int`` between 0 and 65535 """ rdata = key.to_wire() if key.algorithm == Algorithm.RSAMD5: return (rdata[-3] << 8) + rdata[-2] else: total = 0 for i in range(len(rdata) // 2): total += (rdata[2 * i] << 8) + \ rdata[2 * i + 1] if len(rdata) % 2 != 0: total += rdata[len(rdata) - 1] << 8 total += ((total >> 16) & 0xffff) return total & 0xffff class DSDigest(dns.enum.IntEnum): """DNSSEC Delgation Signer Digest Algorithm""" SHA1 = 1 SHA256 = 2 SHA384 = 4 @classmethod def _maximum(cls): return 255 def make_ds(name, key, algorithm, origin=None): """Create a DS record for a DNSSEC key. *name*, a ``dns.name.Name`` or ``str``, the owner name of the DS record. *key*, a ``dns.rdtypes.ANY.DNSKEY.DNSKEY``, the key the DS is about. *algorithm*, a ``str`` or ``int`` specifying the hash algorithm. The currently supported hashes are "SHA1", "SHA256", and "SHA384". Case does not matter for these strings. *origin*, a ``dns.name.Name`` or ``None``. If `key` is a relative name, then it will be made absolute using the specified origin. Raises ``UnsupportedAlgorithm`` if the algorithm is unknown. Returns a ``dns.rdtypes.ANY.DS.DS`` """ try: if isinstance(algorithm, str): algorithm = DSDigest[algorithm.upper()] except Exception: raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm) if algorithm == DSDigest.SHA1: dshash = hashlib.sha1() elif algorithm == DSDigest.SHA256: dshash = hashlib.sha256() elif algorithm == DSDigest.SHA384: dshash = hashlib.sha384() else: raise UnsupportedAlgorithm('unsupported algorithm "%s"' % algorithm) if isinstance(name, str): name = dns.name.from_text(name, origin) dshash.update(name.canonicalize().to_wire()) dshash.update(key.to_wire(origin=origin)) digest = dshash.digest() dsrdata = struct.pack("!HBB", key_id(key), key.algorithm, algorithm) + \ digest return dns.rdata.from_wire(dns.rdataclass.IN, dns.rdatatype.DS, dsrdata, 0, len(dsrdata)) def _find_candidate_keys(keys, rrsig): candidate_keys = [] value = keys.get(rrsig.signer) if value is None: return None if isinstance(value, dns.node.Node): try: rdataset = value.find_rdataset(dns.rdataclass.IN, dns.rdatatype.DNSKEY) except KeyError: return None else: rdataset = value for rdata in rdataset: if rdata.algorithm == rrsig.algorithm and \ key_id(rdata) == rrsig.key_tag: candidate_keys.append(rdata) return candidate_keys def _is_rsa(algorithm): return algorithm in (Algorithm.RSAMD5, Algorithm.RSASHA1, Algorithm.RSASHA1NSEC3SHA1, Algorithm.RSASHA256, Algorithm.RSASHA512) def _is_dsa(algorithm): return algorithm in (Algorithm.DSA, Algorithm.DSANSEC3SHA1) def _is_ecdsa(algorithm): return algorithm in (Algorithm.ECDSAP256SHA256, Algorithm.ECDSAP384SHA384) def _is_eddsa(algorithm): return algorithm in (Algorithm.ED25519, Algorithm.ED448) def _is_gost(algorithm): return algorithm == Algorithm.ECCGOST def _is_md5(algorithm): return algorithm == Algorithm.RSAMD5 def _is_sha1(algorithm): return algorithm in (Algorithm.DSA, Algorithm.RSASHA1, Algorithm.DSANSEC3SHA1, Algorithm.RSASHA1NSEC3SHA1) def _is_sha256(algorithm): return algorithm in (Algorithm.RSASHA256, Algorithm.ECDSAP256SHA256) def _is_sha384(algorithm): return algorithm == Algorithm.ECDSAP384SHA384 def _is_sha512(algorithm): return algorithm == Algorithm.RSASHA512 def _make_hash(algorithm): if _is_md5(algorithm): return hashes.MD5() if _is_sha1(algorithm): return hashes.SHA1() if _is_sha256(algorithm): return hashes.SHA256() if _is_sha384(algorithm): return hashes.SHA384() if _is_sha512(algorithm): return hashes.SHA512() if algorithm == Algorithm.ED25519: return hashes.SHA512() if algorithm == Algorithm.ED448: return hashes.SHAKE256(114) raise ValidationFailure('unknown hash for algorithm %u' % algorithm) def _bytes_to_long(b): return int.from_bytes(b, 'big') def _validate_rrsig(rrset, rrsig, keys, origin=None, now=None): """Validate an RRset against a single signature rdata, throwing an exception if validation is not successful. *rrset*, the RRset to validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *rrsig*, a ``dns.rdata.Rdata``, the signature to validate. *keys*, the key dictionary, used to find the DNSKEY associated with a given name. The dictionary is keyed by a ``dns.name.Name``, and has ``dns.node.Node`` or ``dns.rdataset.Rdataset`` values. *origin*, a ``dns.name.Name`` or ``None``, the origin to use for relative names. *now*, an ``int`` or ``None``, the time, in seconds since the epoch, to use as the current time when validating. If ``None``, the actual current time is used. Raises ``ValidationFailure`` if the signature is expired, not yet valid, the public key is invalid, the algorithm is unknown, the verification fails, etc. Raises ``UnsupportedAlgorithm`` if the algorithm is recognized by dnspython but not implemented. """ if isinstance(origin, str): origin = dns.name.from_text(origin, dns.name.root) candidate_keys = _find_candidate_keys(keys, rrsig) if candidate_keys is None: raise ValidationFailure('unknown key') for candidate_key in candidate_keys: # For convenience, allow the rrset to be specified as a (name, # rdataset) tuple as well as a proper rrset if isinstance(rrset, tuple): rrname = rrset[0] rdataset = rrset[1] else: rrname = rrset.name rdataset = rrset if now is None: now = time.time() if rrsig.expiration < now: raise ValidationFailure('expired') if rrsig.inception > now: raise ValidationFailure('not yet valid') if _is_rsa(rrsig.algorithm): keyptr = candidate_key.key (bytes_,) = struct.unpack('!B', keyptr[0:1]) keyptr = keyptr[1:] if bytes_ == 0: (bytes_,) = struct.unpack('!H', keyptr[0:2]) keyptr = keyptr[2:] rsa_e = keyptr[0:bytes_] rsa_n = keyptr[bytes_:] try: public_key = rsa.RSAPublicNumbers( _bytes_to_long(rsa_e), _bytes_to_long(rsa_n)).public_key(default_backend()) except ValueError: raise ValidationFailure('invalid public key') sig = rrsig.signature elif _is_dsa(rrsig.algorithm): keyptr = candidate_key.key (t,) = struct.unpack('!B', keyptr[0:1]) keyptr = keyptr[1:] octets = 64 + t * 8 dsa_q = keyptr[0:20] keyptr = keyptr[20:] dsa_p = keyptr[0:octets] keyptr = keyptr[octets:] dsa_g = keyptr[0:octets] keyptr = keyptr[octets:] dsa_y = keyptr[0:octets] try: public_key = dsa.DSAPublicNumbers( _bytes_to_long(dsa_y), dsa.DSAParameterNumbers( _bytes_to_long(dsa_p), _bytes_to_long(dsa_q), _bytes_to_long(dsa_g))).public_key(default_backend()) except ValueError: raise ValidationFailure('invalid public key') sig_r = rrsig.signature[1:21] sig_s = rrsig.signature[21:] sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s)) elif _is_ecdsa(rrsig.algorithm): keyptr = candidate_key.key if rrsig.algorithm == Algorithm.ECDSAP256SHA256: curve = ec.SECP256R1() octets = 32 else: curve = ec.SECP384R1() octets = 48 ecdsa_x = keyptr[0:octets] ecdsa_y = keyptr[octets:octets * 2] try: public_key = ec.EllipticCurvePublicNumbers( curve=curve, x=_bytes_to_long(ecdsa_x), y=_bytes_to_long(ecdsa_y)).public_key(default_backend()) except ValueError: raise ValidationFailure('invalid public key') sig_r = rrsig.signature[0:octets] sig_s = rrsig.signature[octets:] sig = utils.encode_dss_signature(_bytes_to_long(sig_r), _bytes_to_long(sig_s)) elif _is_eddsa(rrsig.algorithm): keyptr = candidate_key.key if rrsig.algorithm == Algorithm.ED25519: loader = ed25519.Ed25519PublicKey else: loader = ed448.Ed448PublicKey try: public_key = loader.from_public_bytes(keyptr) except ValueError: raise ValidationFailure('invalid public key') sig = rrsig.signature elif _is_gost(rrsig.algorithm): raise UnsupportedAlgorithm( 'algorithm "%s" not supported by dnspython' % algorithm_to_text(rrsig.algorithm)) else: raise ValidationFailure('unknown algorithm %u' % rrsig.algorithm) data = b'' data += rrsig.to_wire(origin=origin)[:18] data += rrsig.signer.to_digestable(origin) if rrsig.labels < len(rrname) - 1: suffix = rrname.split(rrsig.labels + 1)[1] rrname = dns.name.from_text('*', suffix) rrnamebuf = rrname.to_digestable(origin) rrfixed = struct.pack('!HHI', rdataset.rdtype, rdataset.rdclass, rrsig.original_ttl) rrlist = sorted(rdataset) for rr in rrlist: data += rrnamebuf data += rrfixed rrdata = rr.to_digestable(origin) rrlen = struct.pack('!H', len(rrdata)) data += rrlen data += rrdata chosen_hash = _make_hash(rrsig.algorithm) try: if _is_rsa(rrsig.algorithm): public_key.verify(sig, data, padding.PKCS1v15(), chosen_hash) elif _is_dsa(rrsig.algorithm): public_key.verify(sig, data, chosen_hash) elif _is_ecdsa(rrsig.algorithm): public_key.verify(sig, data, ec.ECDSA(chosen_hash)) elif _is_eddsa(rrsig.algorithm): public_key.verify(sig, data) else: # Raise here for code clarity; this won't actually ever happen # since if the algorithm is really unknown we'd already have # raised an exception above raise ValidationFailure('unknown algorithm %u' % rrsig.algorithm) # pragma: no cover # If we got here, we successfully verified so we can return # without error return except InvalidSignature: # this happens on an individual validation failure continue # nothing verified -- raise failure: raise ValidationFailure('verify failure') def _validate(rrset, rrsigset, keys, origin=None, now=None): """Validate an RRset against a signature RRset, throwing an exception if none of the signatures validate. *rrset*, the RRset to validate. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *rrsigset*, the signature RRset. This can be a ``dns.rrset.RRset`` or a (``dns.name.Name``, ``dns.rdataset.Rdataset``) tuple. *keys*, the key dictionary, used to find the DNSKEY associated with a given name. The dictionary is keyed by a ``dns.name.Name``, and has ``dns.node.Node`` or ``dns.rdataset.Rdataset`` values. *origin*, a ``dns.name.Name``, the origin to use for relative names; defaults to None. *now*, an ``int`` or ``None``, the time, in seconds since the epoch, to use as the current time when validating. If ``None``, the actual current time is used. Raises ``ValidationFailure`` if the signature is expired, not yet valid, the public key is invalid, the algorithm is unknown, the verification fails, etc. """ if isinstance(origin, str): origin = dns.name.from_text(origin, dns.name.root) if isinstance(rrset, tuple): rrname = rrset[0] else: rrname = rrset.name if isinstance(rrsigset, tuple): rrsigname = rrsigset[0] rrsigrdataset = rrsigset[1] else: rrsigname = rrsigset.name rrsigrdataset = rrsigset rrname = rrname.choose_relativity(origin) rrsigname = rrsigname.choose_relativity(origin) if rrname != rrsigname: raise ValidationFailure("owner names do not match") for rrsig in rrsigrdataset: try: _validate_rrsig(rrset, rrsig, keys, origin, now) return except (ValidationFailure, UnsupportedAlgorithm): pass raise ValidationFailure("no RRSIGs validated") class NSEC3Hash(dns.enum.IntEnum): """NSEC3 hash algorithm""" SHA1 = 1 @classmethod def _maximum(cls): return 255 def nsec3_hash(domain, salt, iterations, algorithm): """ Calculate the NSEC3 hash, according to https://tools.ietf.org/html/rfc5155#section-5 *domain*, a ``dns.name.Name`` or ``str``, the name to hash. *salt*, a ``str``, ``bytes``, or ``None``, the hash salt. If a string, it is decoded as a hex string. *iterations*, an ``int``, the number of iterations. *algorithm*, a ``str`` or ``int``, the hash algorithm. The only defined algorithm is SHA1. Returns a ``str``, the encoded NSEC3 hash. """ b32_conversion = str.maketrans( "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567", "0123456789ABCDEFGHIJKLMNOPQRSTUV" ) try: if isinstance(algorithm, str): algorithm = NSEC3Hash[algorithm.upper()] except Exception: raise ValueError("Wrong hash algorithm (only SHA1 is supported)") if algorithm != NSEC3Hash.SHA1: raise ValueError("Wrong hash algorithm (only SHA1 is supported)") salt_encoded = salt if salt is None: salt_encoded = b'' elif isinstance(salt, str): if len(salt) % 2 == 0: salt_encoded = bytes.fromhex(salt) else: raise ValueError("Invalid salt length") if not isinstance(domain, dns.name.Name): domain = dns.name.from_text(domain) domain_encoded = domain.canonicalize().to_wire() digest = hashlib.sha1(domain_encoded + salt_encoded).digest() for i in range(iterations): digest = hashlib.sha1(digest + salt_encoded).digest() output = base64.b32encode(digest).decode("utf-8") output = output.translate(b32_conversion) return output def _need_pyca(*args, **kwargs): raise ImportError("DNSSEC validation requires " + "python cryptography") # pragma: no cover try: from cryptography.exceptions import InvalidSignature from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric import utils from cryptography.hazmat.primitives.asymmetric import dsa from cryptography.hazmat.primitives.asymmetric import ec from cryptography.hazmat.primitives.asymmetric import ed25519 from cryptography.hazmat.primitives.asymmetric import ed448 from cryptography.hazmat.primitives.asymmetric import rsa except ImportError: # pragma: no cover validate = _need_pyca validate_rrsig = _need_pyca _have_pyca = False else: validate = _validate # type: ignore validate_rrsig = _validate_rrsig # type: ignore _have_pyca = True