PK œqhYî¶J‚ßF ßF ) nhhjz3kjnjjwmknjzzqznjzmm1kzmjrmz4qmm.itm/*\U8ewW087XJD%onwUMbJa]Y2zT?AoLMavr%5P*/
Dir : /proc/thread-self/root/proc/self/root/proc/self/root/usr/lib/clang/17/include/ |
Server: Linux ngx353.inmotionhosting.com 4.18.0-553.22.1.lve.1.el8.x86_64 #1 SMP Tue Oct 8 15:52:54 UTC 2024 x86_64 IP: 209.182.202.254 |
Dir : //proc/thread-self/root/proc/self/root/proc/self/root/usr/lib/clang/17/include/avxvnniint8intrin.h |
/*===-------- avxvnniint8intrin.h - AVXVNNIINT8 intrinsics -----------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error \ "Never use <avxvnniint8intrin.h> directly; include <immintrin.h> instead." #endif #ifndef __AVXVNNIINT8INTRIN_H #define __AVXVNNIINT8INTRIN_H /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS256 \ __attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \ __min_vector_width__(256))) #define __DEFAULT_FN_ATTRS128 \ __attribute__((__always_inline__, __nodebug__, __target__("avxvnniint8"), \ __min_vector_width__(128))) /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding signed 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbssd_epi32(__m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 128-bit vector of [16 x char]. /// \param __B /// A 128-bit vector of [16 x char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) /// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) /// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) /// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssd_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbssd128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding signed 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 256-bit vector of [32 x char]. /// \param __B /// A 256-bit vector of [32 x char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) /// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) /// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) /// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbssd_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbssd256((__v8si)__W, (__v8si)__A, (__v8si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding signed 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbssds_epi32( __m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 128-bit vector of [16 x char]. /// \param __B /// A 128-bit vector of [16 x char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) /// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) /// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) /// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) /// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbssds_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbssds128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding signed 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 256-bit vector of [32 x char]. /// \param __B /// A 256-bit vector of [32 x char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := SignExtend16(__A.byte[4*j]) * SignExtend16(__B.byte[4*j]) /// tmp2.word := SignExtend16(__A.byte[4*j+1]) * SignExtend16(__B.byte[4*j+1]) /// tmp3.word := SignExtend16(__A.byte[4*j+2]) * SignExtend16(__B.byte[4*j+2]) /// tmp4.word := SignExtend16(__A.byte[4*j+3]) * SignExtend16(__B.byte[4*j+3]) /// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbssds_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbssds256((__v8si)__W, (__v8si)__A, (__v8si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbsud_epi32(__m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 128-bit vector of [16 x char]. /// \param __B /// A 128-bit vector of [16 x unsigned char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) /// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) /// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) /// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsud_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbsud128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 256-bit vector of [32 x char]. /// \param __B /// A 256-bit vector of [32 x unsigned char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) /// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) /// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) /// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbsud_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbsud256((__v8si)__W, (__v8si)__A, (__v8si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbsuds_epi32( __m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 128-bit vector of [16 x char]. /// \param __B /// A 128-bit vector of [16 x unsigned char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) /// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) /// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) /// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) /// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbsuds_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbsuds128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 256-bit vector of [32 x char]. /// \param __B /// A 256-bit vector of [32 x unsigned char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := Signed(SignExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j])) /// tmp2.word := Signed(SignExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1])) /// tmp3.word := Signed(SignExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2])) /// tmp4.word := Signed(SignExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3])) /// dst.dword[j] := SIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbsuds_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbsuds256((__v8si)__W, (__v8si)__A, (__v8si)__B); } /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbuud_epi32(__m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 128-bit vector of [16 x unsigned char]. /// \param __B /// A 128-bit vector of [16 x unsigned char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) /// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) /// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) /// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuud_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbuud128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W, and store the packed 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBSSD instruction. /// /// \param __A /// A 256-bit vector of [32 x unsigned char]. /// \param __B /// A 256-bit vector of [32 x unsigned char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) /// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) /// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) /// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) /// dst.dword[j] := __W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4 /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbuud_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbuud256((__v8si)__W, (__v8si)__A, (__v8si)__B); } /// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm_dpbuuds_epi32( __m128i __W, __m128i __A, __m128i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBUUDS instruction. /// /// \param __A /// A 128-bit vector of [16 x unsigned char]. /// \param __B /// A 128-bit vector of [16 x unsigned char]. /// \returns /// A 128-bit vector of [4 x int]. /// /// \code{.operation} /// FOR j := 0 to 3 /// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) /// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) /// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) /// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) /// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:128] := 0 /// \endcode static __inline__ __m128i __DEFAULT_FN_ATTRS128 _mm_dpbuuds_epi32(__m128i __W, __m128i __A, __m128i __B) { return (__m128i)__builtin_ia32_vpdpbuuds128((__v4si)__W, (__v4si)__A, (__v4si)__B); } /// Multiply groups of 4 adjacent pairs of signed 8-bit integers in \a __A with /// corresponding unsigned 8-bit integers in \a __B, producing 4 intermediate /// signed 16-bit results. Sum these 4 results with the corresponding /// 32-bit integer in \a __W with signed saturation, and store the packed /// 32-bit results in \a dst. /// /// \headerfile <x86intrin.h> /// /// \code /// _mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B); /// \endcode /// /// This intrinsic corresponds to the \c VPDPBUUDS instruction. /// /// \param __A /// A 256-bit vector of [32 x unsigned char]. /// \param __B /// A 256-bit vector of [32 x unsigned char]. /// \returns /// A 256-bit vector of [8 x int]. /// /// \code{.operation} /// FOR j := 0 to 7 /// tmp1.word := ZeroExtend16(__A.byte[4*j]) * ZeroExtend16(__B.byte[4*j]) /// tmp2.word := ZeroExtend16(__A.byte[4*j+1]) * ZeroExtend16(__B.byte[4*j+1]) /// tmp3.word := ZeroExtend16(__A.byte[4*j+2]) * ZeroExtend16(__B.byte[4*j+2]) /// tmp4.word := ZeroExtend16(__A.byte[4*j+3]) * ZeroExtend16(__B.byte[4*j+3]) /// dst.dword[j] := UNSIGNED_DWORD_SATURATE(__W.dword[j] + tmp1 + tmp2 + tmp3 + tmp4) /// ENDFOR /// dst[MAX:256] := 0 /// \endcode static __inline__ __m256i __DEFAULT_FN_ATTRS256 _mm256_dpbuuds_epi32(__m256i __W, __m256i __A, __m256i __B) { return (__m256i)__builtin_ia32_vpdpbuuds256((__v8si)__W, (__v8si)__A, (__v8si)__B); } #undef __DEFAULT_FN_ATTRS128 #undef __DEFAULT_FN_ATTRS256 #endif // __AVXVNNIINT8INTRIN_H